#### **MTSAT**

Integrated CNS Conference & Workshop

20 May 2003

Annapolis

Shigeki Masuda

Civil Aviation Bureau Japan

#### Mission of MTSAT

- Twofold; Aeronautical and Meteorological, two payloads onboard that work independently.
- "MTSAT" stands for Multi-functional Transport Satellite.
- Owner and Operator;
  - JCAB (Japan Civil Aviation Bureau) and
  - JMA (Japan Meteorological Agency), both belong to MLIT. (Ministry of Land, Infrastructure and Transport)
- Aeronautical mission provides two services. (MSAS & AMSS)

# World meteorological satellite observation network



### Distribution of Utilization Station on GMS-5



|                            | 1                                                                   | MTSAT Specifications                     |  |  |  |
|----------------------------|---------------------------------------------------------------------|------------------------------------------|--|--|--|
| Type                       | 3 Axes Attitude Controlled<br>Geostationary Satellite               |                                          |  |  |  |
| Life                       | More than 10 years for Aero mission and 5 years for Met             |                                          |  |  |  |
| Orbit                      | 36,000km above the equator, 140 degrees of east longitude           | L Band Spot Antenna Solar Sail           |  |  |  |
| Frequency for Aero mission | Ku(4 spot beams), Ka band (3 spot beams) L(global and 6 spot beams) | Ku Band Antenna Boom                     |  |  |  |
| Frequency for Met mission  | S band and UHF band                                                 | L Band Patched Array Antenna             |  |  |  |
| Frequency for TT&C         | Ku band, S band and Unified S-band                                  | Imager<br>UHF Antenna                    |  |  |  |
| Weight /Length/Width       | About 3.3 ton at launch & 1.4 ton with dry condition /33.1m/10.7m   | S Band Slotted Array Antenna             |  |  |  |
|                            |                                                                     | TT&C Antenna                             |  |  |  |
|                            |                                                                     | Ka Band Antenna<br>L Band Global Antenna |  |  |  |

Solar Cell Battery Panel

#### MTSAT Aero Mission Objectives

 Provide safe and efficient aircraft operation in the growing Asia/Pacific airspace, based on ICAO New CNS/ATM Concept, utilizing AMSS and MSAS

• Core two MTSATs on the orbit and four GESs at two Aeronautical Satellite Centers.

### System Configuration - AMSS



Interface with ground network will appear on later slide

#### AMSS Configuration



### Interface with ground network



#### Channel Specification

| Channel        | Meanings                                                         | Direction    | <b>Channel Rates</b> | <b>Modulation Type</b> | Bandwidth/ch |
|----------------|------------------------------------------------------------------|--------------|----------------------|------------------------|--------------|
| P              | Packet mode-time division multiplex (TDM) channel                | Forward Link | 600 / 1200 bps       | 1/2 FEC A-BPSK         | 5.0 KHz      |
|                | multiplex (1DW) chamier                                          |              | 10.5 kbps            | 1/2 FEC A-QPSK         | 10.0 KHz     |
| R              | Random access (slotted Aloha) channel                            | Return Link  | 600 / 1200 bps       | 1/2 FEC A-BPSK         | 2.5 KHz      |
|                |                                                                  |              | 10.5 kbps            | 1/2 FEC A-QPSK         | 10.0 KHz     |
| Т              | Reservation-time division multiple access (TDMA) channel         | Return Link  | 600 / 1200 bps       | 1/2 FEC A-BPSK         | 2.5 KHz      |
|                |                                                                  |              | 10.5 kbps            | 1/2 FEC A-QPSK         | 10.0 KHz     |
| C<br>H Service | Circuit mode-single channel per carrier (SCPC) channel Full Rate | Forward Link | 21.0 kbps            | 1/2 FEC A-QPSK         | 17.5 KHz     |
|                |                                                                  | Return Link  | 21.0 kbps            | 1/2 FEC A-QPSK         | 17.5 KHz     |
| C              | Circuit mode-single channel per carrier (SCPC) channel Half Rate | Forward Link | 8.4 kbps             | 2/3 FEC A-QPSK         | 7.5 KHz      |
|                |                                                                  | Return Link  | 8.4 kbps             | 2/3 FEC A-QPSK         | 7.5 KHz      |

#### Beam Coverage-Global and Spot



#### Redundant Configuration

#### **Satellites**

Both MTSAT-1R and MTSAT-2 will be operated simultaneously, sharing the same traffic volume with each other.

The communication link will be switched over to another MTSAT Satellite instantaneously in the case of a malfunction of a MTSAT satellite to ensure continuous AMSS.

#### **GESs**

Geographically separated Aeronautical Satellite Centers are located in two sites, Kobe and Hitachi Ota.

Each ASC consists of two dedicated GESs for MTSAT-1R and MTSAT-2, which also has the capability to switch over to another GES when any anomaly arises.

#### Kobe Aeronautical Satellite Center



#### Hitachiota Aeronautical Satellite Center



#### Satellite Operation Room



Reliable operation with 2 satellites and 4 GESs





#### In the case of satellite failure





#### In the case of GESs failure



#### Interoperability with existing AMSS



#### Maintaining Interoperability



#### Maintaining Interoperability

- Both Inmarsat and MTSAT GES will transmit a Common System Table to enable AES to have Inmarsat and MTSAT while including GESs on its owners requirement table for interoperability between the systems.
- This mechanism has been coordinated in the ICAO AMCP, and maintained under an MOU between JCAB and Inmarsat in the scope of the the ICAO SARPs.
- An Inmarsat commissioned AES will log on to Inmarsat or MTSAT automatically under the coverage, provided adequate preference is given in ORT.

#### MSAS Overview

- MSAS (MTSAT Satellite-based Augmentation System) is one of three SBASs compliant with ICAO SARPs.
- Dual GEO (two MTSATs) coverage will ensure high reliability and availability of services
- MSAS is expected to function as a shared infrastructure within the Asia/Pacific region for GNSS.

### System Configuration - MSAS



### MSAS Configuration





#### Service Volume Model Analysis (NPA) MSAS 8 site



#### Interoperability among SBASs

MSAS is interoperable with U.S. WAAS and European EGNOS



#### MTSAT/AMSS/MSAS Schedule





## Thanks

